A Source Transfer Domain Decomposition Method for Helmholtz Equations in Unbounded Domain

نویسندگان

  • Zhiming Chen
  • Xueshuang Xiang
چکیده

Abstract. We propose and study a domain decomposition method for solving the truncated perfectly matched layer (PML) approximation in bounded domain of Helmholtz scattering problems. The method is based on the decomposition of the domain into non-overlapping layers and the idea of source transfer which transfers the sources equivalently layer by layer so that the solution in the final layer can be solved using a PML method defined locally outside the last two layers. The convergence of the method is proved for the case of constant wave number based on the analysis of the fundamental solution of the PML equation. The method can be used as an efficient preconditioner in the preconditioned GMRES method for solving discrete Helmholtz equations with constant and heterogeneous wave numbers. Numerical examples are included.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Source Transfer Domain Decomposition Method For Helmholtz Equations in Unbounded Domain Part II: Extensions

In this paper we extend the source transfer domain decomposition method (STDDM) introduced by the authors to solve the Helmholtz problems in two-layered media, the Helmholtz scattering problems with bounded scatterer, and Helmholtz problems in 3D unbounded domains. The STDDM is based on the decomposition of the domain into non-overlapping layers and the idea of source transfer which transfers t...

متن کامل

Numerical solution of Fredholm integral-differential equations on unbounded domain

In this study, a new and efficient approach is presented for numerical solution of Fredholm integro-differential equations (FIDEs) of the second kind on unbounded domain with degenerate kernel based on operational matrices with respect to generalized Laguerre polynomials(GLPs). Properties of these polynomials and operational matrices of integration, differentiation are introduced and are ultili...

متن کامل

Application of Decoupled Scaled Boundary Finite Element Method to Solve Eigenvalue Helmholtz Problems (Research Note)

A novel element with arbitrary domain shape by using decoupled scaled boundary finite element (DSBFEM) is proposed for eigenvalue analysis of 2D vibrating rods with different boundary conditions. Within the proposed element scheme, the mode shapes of vibrating rods with variable boundary conditions are modelled and results are plotted. All possible conditions for the rods ends are incorporated ...

متن کامل

Fractional Order Generalized Thermoelastic Functionally Graded Solid with Variable Material Properties

In this work, a new mathematical model of thermoelasticity theory has been considered in the context of a new consideration of heat conduction with fractional order theory. A functionally graded isotropic unbounded medium is considered subjected to a periodically varying heat source in the context of space-time non-local generalization of three-phase-lag thermoelastic model and Green-Naghdi mod...

متن کامل

Consolidation Around a Heat Source in an Isotropic Fully Saturated Rock with Porous Structure in Quasi-Static State

The titled problem of coupled thermoelasticity for porous structure has been solved with an instantaneous heat source acting on a plane area in an unbounded medium. The basic equations of thermoelasticity, after being converted into a one-dimensional form, have been written in the form of a vector-matrix differential equation and solved by the eigenvalue approach for the field variables in the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Numerical Analysis

دوره 51  شماره 

صفحات  -

تاریخ انتشار 2013